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Abstract

The universal gravitational constant was measured using a torsion balance. Manual and
automated methods were used to determine the terminal angle and period of the oscillations,
from which the gravitational constant was calculated. The gravitational constants after
corrections were G, =9.8+0.8x 10711 m3-kg™1-s72? and G, = 1.06 + 0.04 X 10~ m3 -
kg~1:s72 for the manual and automated measurements, respectively. These estimates are not
within their uncertainties of the accepted value G = 6.67384 m3 - kg™ - s72 and have relative
errors of 46% and 84%, respectively. Additional measurements can further improve the manual
measurement results, and fine-tuning the calibration and zeroing of the torsion balance software
can improve the automated measurements.
Introduction
Theory

The gravitational constant can be determined using a torsion balance with masses used to
drive the torsion arm. Suppose that two small masses of mass m are on the torsion arm a distance
d from the axis of rotation, and that two large masses of mass M are positioned at right angles to
the boom in the plane perpendicular to the torsion fiber (see Figure 1b). If each of the small
masses are displaced a distance x from the equilibrium position, and the large masses are both a

distance a from the equilibrium position, then the equation of motion for the torsion arm is [1]
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where 6 is the displacement angle, I is the moment of inertia of the balance arm, k is the torsion
constant of the suspension, R is the viscous damping coefficient, and G is the universal
gravitational constant. The moment of inertia of the balance arm is given by the superposition of
the moment of inertia due to the two spherical masses and the moment of inertia due to the beam.

From the parallel axis theorem,
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where r is the radius of the small sphere and m,,, [, and w;, are the mass, length and width of the

beam, respectively. If we suppose that 8 «< 1, then x = 8d < a, and Eq. 1 can be reduced to a

linear equation (see Appendix I)
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where g =7, w} =§—4Glxgd , and B = ZGIIZZ"d. The general solution to this differential

equation is
t
6(t) = Ae rcos(wot + ¢) + 6, (3)

where T =§ is the decay time constant, 6, =% is the terminal angle and A and ¢ are
0

determined by the boundary conditions. The period of oscillation then is given by T = i—" S0 G
0

can be determined from the period and terminal angle according to
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Corrections to this model can be made by accounting for the attraction between the large

masses and the distant small masses as well as the torque exerted on the torsion beam [2]. The

result is that G can be calculated using
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where m;, is the mass of the hole in the torsion arm due to the small masses, f, is the fractional
torque correction factor due to the distant small masses, m,, is the mass of the beam and f;, is the
correction factor due to the torsion beam.
Apparatus and Methods

The experimental measurements were obtained using a TEL RP2111 computerized
Cavendish torsion balance, shown in Figure la. The basic schematic is shown in Figure 1b,
which indicates the relevant parameters of the configuration. The torsion arm is aluminum, and

the masses are lead.

(@) (b)
. Tungsten Wire
Vertical Support Rods =]
P ‘H—‘H‘H—‘ )
X
Frane Equilibrium position
_~ Centering Pin without large masses. a
Infernal Boom ~— l
-
Capacitive Sensor
External Boom 3 Laser

Figure 1 (a) TEL RP2111 Cavendish Balance [2] and (b) configuration schematic [1]. The large masses M rest on the
external boom and are rotated into position. a is the distance from the equilibrium axis to the center of the large mass; d is half

the length of the boom; x is the displacement of the small masses from the equilibrium axis, and 6 is the rotation angle of the
boom.

The large masses were measured on a digital balance to be M; = 873.8 + 1.0 g and
M, = 871.2 £+ 1.0 g. Since the arrangement is symmetric, though, we can take the mass of each
ball to be the average of the two masses, so M = 872.5 + 0.7 g. The distance a = 4.5 + 0.2 cm
was determined by measuring the width of the Cavendish unit and the diameter of the large
masses with a caliper and taking half of the result. The distance from the rotation axis to the
center of the small masses was measured with the caliper as well to be 6.5 + 0.2 cm, but the

official documentation [2] indicates that d = 6.656 + 0.001 cm. The length and widths of the



beam are also given as [, = 14.993 + 0.001 cm and w;, = 1.87 + 0.001 cm. The small spheres
have a mass of approximately m = 14.6 &+ 0.5 g [2], from which the radii can be found to be
r = 6.75 + 0.08 mm, using the density of lead ppy, = 11.34 g - cm™3. Estimating the thickness
of the beam to be about h;, = 1 mm and removing the mass of the holes where the small masses
rest, the mass of the beam is approximately m;, = 7.4 + 0.2 g, and the moment of inertia of the
torsion arm is I = 1.44 + 0.04 x 10~* kg - m?2. See Appendix Il for a summary of these and
other parameters.

Both manual and automated measurement techniques were used to determine the period
and terminal angle of the oscillations. In the manual measurement, a laser was reflected off of a
mirror on the center of the torsion arm, which was then reflected off of two mirrors on walls
nearly parallel to the equilibrium position, as shown in Figure 2. The period was determined
using a stop watch to measure the time for the laser to pass from one maxima or minima to the

next one.
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Figure 2 Manual measurement setup. Some angle and dimension magnitudes are exaggerated for visualization purposes.
Mirrors are positioned on the walls such that the laser is reflected to the opposite wall. At the terminal point of the laser beam on
the lower wall, measurements of the position of the beam were made using a caliper relative to a fixed location on the wall.

The distances from the equilibrium position to the first wall, and the distance between the two
walls were measured with a tape measure to be L; = 190 + 10 cm and L, = 270 + 10 cm,
respectively.

In the automated method, software was used to capture the oscillation angle as a function
of time at discrete intervals of At = 1.0 s. The torsion balance was allowed to equilibrate, and
the zero point was set in the software. The large masses were then rotated into position, and data

would be collected for at least 40 minutes, at which point the large masses would be rotated to



the opposite position for additional data collection. Initially, the software was calibrated
incorrectly, as it corresponded to an oscillation range of —4 to 4 mrad, whereas the official
documentation indicates that the range should be from —70 to 70 mrad [2]. After discovering
this, a simple calibration was performed, and subsequent data collection was based on this
calibration.
Results and Analysis
Manual Measurement

Determining the terminal angle in the manual technique involves measuring the position
of three successive extrema for the oscillation about the equilibrium position with the large balls
in one position and then doing the same for the balls in the opposite position. From these sets of
extrema, the equilibrium position for each ball position can be determined, and the terminal
angle is calculated from the midpoint of these two positions. Suppose that the displacement of
the laser beam along the lower wall in the equilibrium displacement is given by Y. Then referring

to Figure 2,
— — — -1(Y
Y = (L; + 2L;) tan 26, = Ltan 26, = 6, = tan (ZL) (6)

where L = L; + 2L, = 7.3 + 0.2 m. Figure 3 shows the relevant quantities measured for

determining the equilibrium displacement.
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Figure 3 Graphical depiction of position measurements for manual terminal angle determination. Three successive peak
positions were measured for the oscillation about the equilibrium position for the balls in one orientation (i.e. Z;) and then for the
balls in the opposite orientation (i.e. Z,). The midpoint of Z; and Z, gives the terminal angle equilibrium position.

The equilibrium positions are then given by [1]
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where i € {1,2} for the first and second positions. The measured values for the manual technique

are shown in Table 1.

Table 1 Manual position measurements. Three successive extrema were measured for each equilibrium position corresponding
to one orientation of the large balls. The periods of each configuration were measured between maxima or minima using a timer.

Equilibrium
position T (s) B; (cm) B, (cm) B; (cm) Zy (cm)
1 216 + 4 4.7+ 0.1 3.1+0.1 44+0.1 3.8+0.3
2 223+ 4 7.3+0.1 424+0.1 6.5+ 0.1 5.5+0.3

The equilibrium displacement is given by the midpoint of the equilibrium positions, Y = le;zz

so substituting Eqg. 6 into Eq. 4,
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Thenusing T = T,y = 220 + 25, G, =82+ 0.8 X 107" m? - kg™! - s72,
Automated Measurement

As was indicated previously, improper software calibration was used in the first set of
data collected, so the analysis is restricted to those data sets that were collected after the proper
calibration. Only the first 40 minutes of data correspond to the expected decaying oscillations;
after about 40 to 60 minutes, the oscillations become noisy with high and low-frequency
behaviors not expected by the model. Thus, only the first 40 minutes were used for analysis of
each of the data sets.

Three methods were used to find the oscillation period, and two methods were used to
find the terminal angle in the automated measurement. Fourier analysis can be used to find the
most prominent frequencies, which can then be transformed back into the corresponding period.
By fitting the oscillations to Eq. 3, the period can be directly computed from the w,, fit parameter
value. Finally, the period can be estimated by simply finding the distances between successive
oscillation maxima or minima. To estimate the terminal angle, a simple average of the
displacement angle over a particular range of the oscillations was used. Alternately, a curve fit to
Eq. 3 directly yields the terminal angle. The results of these calculations applied to Eq. 4 to find

G are shown in Table 2.



Table 2 Calculation of G based on different combinations of methods used to find the period and terminal angle. The left
column and top row contain the method for computing the period and terminal angle, respectively. The second column and row
similarly contain the actual values of the period and terminal angle, respectively. The resulting value of G for each combination
in units of m? - kg~ - s72 is in the bottom right portion of the table. FFT refers to Fast Fourier Transform; Fit refers to a curve-
fit method; Extrema refers to taking the difference between successive extrema; Average refers to taking a simple average.

Method | Terminal Angle Average Fit
Period | Value (s/rad) | 7.05+0.06 x 10"°rad 55.5+ 0.3 x 107° rad
FFT 230.5+0.4s 9.0+ 0.9 x 10712 7.1+ 0.7 x 10712
Fit 2141+ 03s 1.0+ 0.1 x 1011 8.2+ 0.8x 10712
Extrema | 215.1+0.5s 1.0+ 0.1 x 1011 8.1+0.8x 10712

Taking the average of all values of G found in the automated measurement, G, = 8.9 + 0.4 X
10712 m3 - kg™1-s572,
Corrections to G

Corrections that account for the torque on the small masses distant from the large masses
as well as the torque on the torsion beam itself result in Eq. 5. The result is that the effective
mass of the small balls is decreased due to the distant ball and increased due to the torsion bar. It
turns out that the decrease in effective mass due to the distant small masses has a larger effect
than the increase due to the torsion bar: meg = (m —my)(1 — f3) + myf, = 12.3g. The
effective mass of the small balls is thus less than their actual mass, and the estimate of G without

the corrections will be an underestimate. In particular, this corresponds to a correction factor of

m

~ 1.19. Applying this correction to the manual and automated measurements, then G,, =

Meff
9.8+0.8x 107" m3-kg71-s7?2and G, = 1.06 £ 0.04 x 10711 m3 - kg1 -s72,
Discussion and Conclusions

Manual Measurement



Neither the uncorrected or corrected values of the gravitational constant found using the
manual technique were within their uncertainties of the actual value of ¢ = 6.67384 m3 - kg1 -
s~2. The uncorrected value for the manual measurement had a relative error of 23% and was 1.8
deviations from the theoretical value, while the corrected value had a relative error of 46%.
Surprisingly, the period measurements for the manual measurement agree very well with the
periods found using the automated measurement. This indicates that the measurement of the
terminal angle is the most likely source of discrepancy between the calculated and theoretical
values of the gravitational constant, so additional measurements may improve the result of the
manual measurement.

Automated Measurement

The corrected and uncorrected values of the gravitational constant found using the
automated method were not within their uncertainties of the theoretical value, both of which
having approximately 85% relative error. There are several challenges associated with the
automated measurement that can lead to systematic errors. For example, not having the torsion
beam centered in the case in its initial equilibrium position will have the effect of increasing the
attraction in one direction of oscillation compared to the other direction. Similarly, the distance
from the center of the small mass to the center of the large mass varies during the oscillation,
which will have an effect on the attractive forces. It turns out that these effects contribute only a
one to two percent correction factor to the value of the gravitational constant though because the
deviation from the equilibrium position is so small compared to the distance between the masses
[2]. One of the largest challenges in the automated measurement was to properly zero and
calibrate the software; misconfiguration would result in a terminal angle measurement that is

very different from its actual value.
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Summary
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Appendix I: Formula and Derivations

Equation 2 results from Equation 1 by first making the assumption that & << 1. Thensin8 = 6,

so x = dsin 8 = d@. If we further assume that d6 « a, then we can write
1 _ 1 1 1 142 <0d>
(a—0d)? a2 od\? a2 a
T a
(1-2)
So rearranging terms, Eqg. 1 becomes
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Appendix I1: Summary of Parameters

Category Parameter Value Description
M 872.5+0.7g Large mass
m 146+ 05¢g Small mass
_ my 74+£02g Mass of torsion beam
Mass/Inertia o 35 401 Mass of aluminum removed from small
h 2L UL8 sphere mass
1.44 £ 0.04 L .
I x 10-* kg - m? Moment of inertia of torsion arm
Distance from axis of rotation to center
d 6.656 + 0.001 cm of small mass
Distance from center of large m
a 45+ 0.2 cm stance from center o .a gg ass to
center of small mass as in Figure 1b
_ _ L 7.3+ 0.2m Projected length of laser beam travel
Dimension/Length 6.75 + 0.08 mm Small mass radius
14.993 .
Length of torsion beam
b +0.001 cm J
wy, 1.87 + 0.001 cm Width of torsion beam
hy, 1 mm Approximate height of torsion beam
Fractional torque correction factor due
. fa 3.28% ,
Correction to the distant small masses torque
Factors f, 20.32% Fractional correction factor due to the

torsion beam torque
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