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Abstract 

 The universal gravitational constant was measured using a torsion balance. Manual and 

automated methods were used to determine the terminal angle and period of the oscillations, 

from which the gravitational constant was calculated. The gravitational constants after 

corrections were 𝐺𝑚 = 9.8 ± 0.8 × 10−11 m3 ∙ kg−1 ∙ s−2 and 𝐺𝑎 = 1.06 ± 0.04 × 10−11 m3 ∙

kg−1 ∙ s−2 for the manual and automated measurements, respectively. These estimates are not 

within their uncertainties of the accepted value 𝐺 = 6.67384 m3 ∙ kg−1 ∙ s−2 and have relative 

errors of 46% and 84%, respectively. Additional measurements can further improve the manual 

measurement results, and fine-tuning the calibration and zeroing of the torsion balance software 

can improve the automated measurements. 

Introduction 

Theory 

The gravitational constant can be determined using a torsion balance with masses used to 

drive the torsion arm. Suppose that two small masses of mass 𝑚 are on the torsion arm a distance 

𝑑 from the axis of rotation, and that two large masses of mass 𝑀 are positioned at right angles to 

the boom in the plane perpendicular to the torsion fiber (see Figure 1b). If each of the small 

masses are displaced a distance 𝑥 from the equilibrium position, and the large masses are both a 

distance 𝑎 from the equilibrium position, then the equation of motion for the torsion arm is [1] 

 𝐼𝜃̈ = −𝑘𝜃 − 𝑅𝜃̇ + 2𝐺𝑀𝑚𝑑
(𝑎−𝑥)2  (1) 
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where 𝜃 is the displacement angle, 𝐼 is the moment of inertia of the balance arm, 𝑘 is the torsion 

constant of the suspension, 𝑅 is the viscous damping coefficient, and 𝐺 is the universal 

gravitational constant. The moment of inertia of the balance arm is given by the superposition of 

the moment of inertia due to the two spherical masses and the moment of inertia due to the beam. 

From the parallel axis theorem, 

 𝐼 = 𝐼𝑆 + 𝐼𝑏 = 𝐼𝑆,cm + 𝑚𝑑2 + 𝐼𝑏 = 2𝑚�2
5
𝑟2 + 𝑑2� + 𝑚𝑏

12
(𝑙𝑏2 + 𝑤𝑏

2) (2) 

where 𝑟 is the radius of the small sphere and 𝑚𝑏, 𝑙𝑏 and 𝑤𝑏 are the mass, length and width of the 

beam, respectively. If we suppose that 𝜃 ≪ 1, then 𝑥 ≈ 𝜃𝑑 ≪ 𝑎, and Eq. 1 can be reduced to a 

linear equation (see Appendix I) 

 𝜃̈ + 𝑔𝜃̇ + 𝜔0
2𝜃 = 𝐵 (2) 

where 𝑔 = 𝑅
𝐼
, 𝜔0

2 = 𝑘
𝐼
− 4𝐺𝑀𝑚𝑑2

𝐼𝑎3
, and 𝐵 = 2𝐺𝑀𝑚𝑑

𝐼𝑎2
. The general solution to this differential 

equation is 

 𝜃(𝑡) = 𝐴𝑒−
𝑡
𝜏 cos(𝜔0𝑡 + 𝜙) + 𝜃𝑝 (3) 

where 𝜏 = 2
𝑔
 is the decay time constant, 𝜃𝑝 = 𝐵

𝜔0
2 is the terminal angle and 𝐴 and 𝜙 are 

determined by the boundary conditions. The period of oscillation then is given by 𝑇 = 2𝜋
𝜔0

, so 𝐺 

can be determined from the period and terminal angle according to 

 𝜃𝑝 = 𝐵
𝜔0
2 = �𝐺𝑀𝑚𝑑

𝐼𝑎2
� � 𝑇2

2𝜋2
� ⇒ 𝐺 = 2𝜃𝑝𝐼

𝑀𝑚𝑑
�𝜋𝑎
𝑇
�
2
 (4) 

Corrections to this model can be made by accounting for the attraction between the large 

masses and the distant small masses as well as the torque exerted on the torsion beam [2]. The 

result is that 𝐺 can be calculated using 

 𝐺 = 2𝜃𝑝𝐼
𝑀�(𝑚−𝑚ℎ)(1−𝑓𝑑)+𝑚𝑏𝑓𝑏�𝑑

�𝜋𝑎
𝑇
�
2
 (5) 
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where 𝑚ℎ is the mass of the hole in the torsion arm due to the small masses, 𝑓𝑑 is the fractional 

torque correction factor due to the distant small masses, 𝑚𝑏 is the mass of the beam and 𝑓𝑏 is the 

correction factor due to the torsion beam. 

Apparatus and Methods 

The experimental measurements were obtained using a TEL RP2111 computerized 

Cavendish torsion balance, shown in Figure 1a. The basic schematic is shown in Figure 1b, 

which indicates the relevant parameters of the configuration. The torsion arm is aluminum, and 

the masses are lead. 

 

Figure 1 (a) TEL RP2111 Cavendish Balance [2] and (b) configuration schematic [1]. The large masses 𝑀 rest on the 
external boom and are rotated into position. 𝑎 is the distance from the equilibrium axis to the center of the large mass; 𝑑 is half 
the length of the boom; 𝑥 is the displacement of the small masses from the equilibrium axis, and 𝜃 is the rotation angle of the 
boom. 

The large masses were measured on a digital balance to be 𝑀1 = 873.8 ± 1.0 g and 

𝑀2 = 871.2 ± 1.0 g. Since the arrangement is symmetric, though, we can take the mass of each 

ball to be the average of the two masses, so 𝑀 = 872.5 ± 0.7 g. The distance 𝑎 = 4.5 ± 0.2 cm 

was determined by measuring the width of the Cavendish unit and the diameter of the large 

masses with a caliper and taking half of the result. The distance from the rotation axis to the 

center of the small masses was measured with the caliper as well to be 6.5 ± 0.2 cm, but the 

official documentation [2] indicates that 𝑑 = 6.656 ± 0.001 cm. The length and widths of the 
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beam are also given as 𝑙𝑏 = 14.993 ± 0.001 cm and 𝑤𝑏 = 1.87 ± 0.001 cm. The small spheres 

have a mass of approximately 𝑚 = 14.6 ± 0.5 g [2], from which the radii can be found to be 

𝑟 = 6.75 ± 0.08 mm, using the density of lead 𝜌Pb = 11.34 g ∙ cm−3. Estimating the thickness 

of the beam to be about ℎ𝑏 = 1 mm and removing the mass of the holes where the small masses 

rest, the mass of the beam is approximately 𝑚𝑏 = 7.4 ± 0.2 g, and the moment of inertia of the 

torsion arm is 𝐼 = 1.44 ± 0.04 × 10−4 kg ∙ m2. See Appendix II for a summary of these and 

other parameters. 

Both manual and automated measurement techniques were used to determine the period 

and terminal angle of the oscillations. In the manual measurement, a laser was reflected off of a 

mirror on the center of the torsion arm, which was then reflected off of two mirrors on walls 

nearly parallel to the equilibrium position, as shown in Figure 2. The period was determined 

using a stop watch to measure the time for the laser to pass from one maxima or minima to the 

next one. 
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Figure 2 Manual measurement setup. Some angle and dimension magnitudes are exaggerated for visualization purposes. 
Mirrors are positioned on the walls such that the laser is reflected to the opposite wall. At the terminal point of the laser beam on 
the lower wall, measurements of the position of the beam were made using a caliper relative to a fixed location on the wall. 

The distances from the equilibrium position to the first wall, and the distance between the two 

walls were measured with a tape measure to be 𝐿1 = 190 ± 10 cm and 𝐿2 = 270 ± 10 cm, 

respectively. 

In the automated method, software was used to capture the oscillation angle as a function 

of time at discrete intervals of Δ𝑡 = 1.0 s. The torsion balance was allowed to equilibrate, and 

the zero point was set in the software. The large masses were then rotated into position, and data 

would be collected for at least 40 minutes, at which point the large masses would be rotated to 
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the opposite position for additional data collection. Initially, the software was calibrated 

incorrectly, as it corresponded to an oscillation range of −4 to 4 mrad, whereas the official 

documentation indicates that the range should be from −70 to 70 mrad [2]. After discovering 

this, a simple calibration was performed, and subsequent data collection was based on this 

calibration. 

Results and Analysis 

Manual Measurement 

Determining the terminal angle in the manual technique involves measuring the position 

of three successive extrema for the oscillation about the equilibrium position with the large balls 

in one position and then doing the same for the balls in the opposite position. From these sets of 

extrema, the equilibrium position for each ball position can be determined, and the terminal 

angle is calculated from the midpoint of these two positions. Suppose that the displacement of 

the laser beam along the lower wall in the equilibrium displacement is given by 𝑌. Then referring 

to Figure 2, 

 𝑌 = (𝐿1 + 2𝐿2) tan 2𝜃𝑝 = 𝐿 tan 2𝜃𝑝 ⇒ 𝜃𝑝 = tan−1 � 𝑌
2𝐿
� (6) 

where 𝐿 = 𝐿1 + 2𝐿2 = 7.3 ± 0.2 m. Figure 3 shows the relevant quantities measured for 

determining the equilibrium displacement. 
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Figure 3 Graphical depiction of position measurements for manual terminal angle determination. Three successive peak 
positions were measured for the oscillation about the equilibrium position for the balls in one orientation (i.e. 𝑍1) and then for the 
balls in the opposite orientation (i.e. 𝑍2). The midpoint of 𝑍1 and 𝑍2 gives the terminal angle equilibrium position. 

The equilibrium positions are then given by [1] 

 𝑍𝑖 = 𝐵2𝑖
2 −𝐵3𝑖𝐵1𝑖

2𝐵2𝑖−𝐵1𝑖−𝐵3𝑖
 (7) 

where 𝑖 ∈ {1,2} for the first and second positions. The measured values for the manual technique 

are shown in Table 1. 

Table 1 Manual position measurements. Three successive extrema were measured for each equilibrium position corresponding 
to one orientation of the large balls. The periods of each configuration were measured between maxima or minima using a timer. 

Equilibrium 
position 𝑇 (s) 𝐵1 (cm) 𝐵2 (cm) 𝐵3 (cm) 𝑍1 (cm) 

1 216 ± 4 4.7 ± 0.1 3.1 ± 0.1 4.4 ± 0.1 3.8 ± 0.3 
2 223 ± 4 7.3 ± 0.1 4.2 ± 0.1 6.5 ± 0.1 5.5 ± 0.3 

 

The equilibrium displacement is given by the midpoint of the equilibrium positions, 𝑌 = 𝑍1−𝑍2
2

, 

so substituting Eq. 6 into Eq. 4, 
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Then using 𝑇 = 𝑇avg = 220 ± 2 s, 𝐺𝑚 = 8.2 ± 0.8 × 10−11 m3 ∙ kg−1 ∙ s−2. 

Automated Measurement 

As was indicated previously, improper software calibration was used in the first set of 

data collected, so the analysis is restricted to those data sets that were collected after the proper 

calibration. Only the first 40 minutes of data correspond to the expected decaying oscillations; 

after about 40 to 60 minutes, the oscillations become noisy with high and low-frequency 

behaviors not expected by the model. Thus, only the first 40 minutes were used for analysis of 

each of the data sets. 

Three methods were used to find the oscillation period, and two methods were used to 

find the terminal angle in the automated measurement. Fourier analysis can be used to find the 

most prominent frequencies, which can then be transformed back into the corresponding period. 

By fitting the oscillations to Eq. 3, the period can be directly computed from the 𝜔0 fit parameter 

value. Finally, the period can be estimated by simply finding the distances between successive 

oscillation maxima or minima. To estimate the terminal angle, a simple average of the 

displacement angle over a particular range of the oscillations was used. Alternately, a curve fit to 

Eq. 3 directly yields the terminal angle. The results of these calculations applied to Eq. 4 to find 

𝐺 are shown in Table 2. 

8 



 

Table 2 Calculation of 𝑮 based on different combinations of methods used to find the period and terminal angle. The left 
column and top row contain the method for computing the period and terminal angle, respectively. The second column and row 
similarly contain the actual values of the period and terminal angle, respectively. The resulting value of 𝐺 for each combination 
in units of m3 ∙ kg−1 ∙ s−2 is in the bottom right portion of the table. FFT refers to Fast Fourier Transform; Fit refers to a curve-
fit method; Extrema refers to taking the difference between successive extrema; Average refers to taking a simple average. 

Method Terminal Angle Average Fit 
Period Value (s/rad) 7.05 ± 0.06 × 10−5 rad 55.5 ± 0.3 × 10−5 rad 
FFT 230.5 ± 0.4 s 9.0 ± 0.9 × 10−12 7.1 ± 0.7 × 10−12 
Fit 214.1 ± 0.3 s 1.0 ± 0.1 × 10−11 8.2 ± 0.8 × 10−12 

Extrema 215.1 ± 0.5 s 1.0 ± 0.1 × 10−11 8.1 ± 0.8 × 10−12 
 

Taking the average of all values of 𝐺 found in the automated measurement, 𝐺𝑎 = 8.9 ± 0.4 ×

10−12 m3 ∙ kg−1 ∙ s−2. 

Corrections to 𝐺 

Corrections that account for the torque on the small masses distant from the large masses 

as well as the torque on the torsion beam itself result in Eq. 5. The result is that the effective 

mass of the small balls is decreased due to the distant ball and increased due to the torsion bar. It 

turns out that the decrease in effective mass due to the distant small masses has a larger effect 

than the increase due to the torsion bar: 𝑚eff = (𝑚−𝑚ℎ)(1 − 𝑓𝑑) + 𝑚𝑏𝑓𝑏 ≈ 12.3 g. The 

effective mass of the small balls is thus less than their actual mass, and the estimate of 𝐺 without 

the corrections will be an underestimate. In particular, this corresponds to a correction factor of 

𝑚
𝑚eff

≈ 1.19. Applying this correction to the manual and automated measurements, then 𝐺𝑚 =

9.8 ± 0.8 × 10−11 m3 ∙ kg−1 ∙ s−2 and 𝐺𝑎 = 1.06 ± 0.04 × 10−11 m3 ∙ kg−1 ∙ s−2. 

Discussion and Conclusions 

Manual Measurement 
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Neither the uncorrected or corrected values of the gravitational constant found using the 

manual technique were within their uncertainties of the actual value of 𝐺 = 6.67384 m3 ∙ kg−1 ∙

s−2. The uncorrected value for the manual measurement had a relative error of 23% and was 1.8 

deviations from the theoretical value, while the corrected value had a relative error of 46%. 

Surprisingly, the period measurements for the manual measurement agree very well with the 

periods found using the automated measurement. This indicates that the measurement of the 

terminal angle is the most likely source of discrepancy between the calculated and theoretical 

values of the gravitational constant, so additional measurements may improve the result of the 

manual measurement. 

Automated Measurement 

The corrected and uncorrected values of the gravitational constant found using the 

automated method were not within their uncertainties of the theoretical value, both of which 

having approximately 85% relative error. There are several challenges associated with the 

automated measurement that can lead to systematic errors. For example, not having the torsion 

beam centered in the case in its initial equilibrium position will have the effect of increasing the 

attraction in one direction of oscillation compared to the other direction. Similarly, the distance 

from the center of the small mass to the center of the large mass varies during the oscillation, 

which will have an effect on the attractive forces. It turns out that these effects contribute only a 

one to two percent correction factor to the value of the gravitational constant though because the 

deviation from the equilibrium position is so small compared to the distance between the masses 

[2]. One of the largest challenges in the automated measurement was to properly zero and 

calibrate the software; misconfiguration would result in a terminal angle measurement that is 

very different from its actual value. 
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Summary 
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Appendix I: Formula and Derivations 

Equation 2 results from Equation 1 by first making the assumption that 𝜃 ≪ 1. Then sin𝜃 ≈ 𝜃, 

so 𝑥 = 𝑑 sin𝜃 ≈ 𝑑𝜃. If we further assume that 𝑑𝜃 ≪ 𝑎, then we can write 

1
(𝑎 − 𝜃𝑑)2 =

1
𝑎2

1

�1 − 𝜃𝑑
𝑎 �

2 ≈
1
𝑎2
�1 + 2 �

𝜃𝑑
𝑎
�� 

So rearranging terms, Eq. 1 becomes 

𝜃̈ +
𝑅
𝐼
𝜃̇ +

𝑘
𝐼
𝜃 =

2𝐺𝑀𝑚𝑑
𝐼𝑎2

�1 + 2 �
𝜃𝑑
𝑎
�� ⇒ 𝜃̈ +

𝑅
𝐼
𝜃̇ + �

𝑘
𝐼
−

4𝐺𝑀𝑚𝑑2

𝐼𝑎3
� 𝜃 =

2𝐺𝑀𝑚𝑑
𝐼𝑎2

⇒ 𝜃̈ + 𝑔𝜃̇ + 𝜔0
2𝜃 = 𝐵 

where 𝑔 = 𝑅
𝐼
, 𝜔0

2 = 𝑘
𝐼
− 4𝐺𝑀𝑚𝑑2

𝐼𝑎3
, and 𝐵 = 2𝐺𝑀𝑚𝑑

𝐼𝑎2
. 
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Appendix II: Summary of Parameters 

Category Parameter Value Description 

Mass/Inertia 

𝑀 872.5 ± 0.7 g Large mass 
𝑚 14.6 ± 0.5 g Small mass 
𝑚𝑏 7.4 ± 0.2 g Mass of torsion beam 

𝑚ℎ 3.5 ± 0.1 g Mass of aluminum removed from small 
sphere mass 

𝐼 1.44 ± 0.04
× 10−4 kg ∙ m2 Moment of inertia of torsion arm 

Dimension/Length 

𝑑 6.656 ± 0.001 cm Distance from axis of rotation to center 
of small mass 

𝑎 4.5 ± 0.2 cm 
Distance from center of large mass to 
center of small mass as in Figure 1b 

𝐿 7.3 ± 0.2 m Projected length of laser beam travel 
𝑟 6.75 ± 0.08 mm Small mass radius 

𝑙𝑏 
14.993
± 0.001 cm 

Length of torsion beam 

𝑤𝑏 1.87 ± 0.001 cm Width of torsion beam 
ℎ𝑏 1 mm Approximate height of torsion beam 

Correction 
Factors 

𝑓𝑑 3.28% Fractional torque correction factor due 
to the distant small masses torque 

𝑓𝑏 20.32% Fractional correction factor due to the 
torsion beam torque 
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